Systems Thinking Example 2: Slinky

In her book Thinking in Systems, Donella Meadows tells how she would often bring a slinky to her classes in order to teach her students systems thinking. What exactly can we learn about systems thinking from a slinky?

Suppose you’re holding a slinky in one upturned hand with the other hand under the slinky. Holding the slinky with one hand you pull the other hand away and let slinky loose. As you’d imagine, the lower end of slinky will bounce up and down in air, with the upper end suspended in your fingers. The question is: what made slinky bounce up and down?

The first answer that might cross your mind is that your hand was the cause. By removing your hand below slinky you let it loose which made it bounce. However, it’s clear that you would not get the same reaction by holding a book, a hammer, or anything else other than slinky in your hand. Slinky bounces up and down because of some inherent characteristic within slinky itself. If that’s the case, what does this actually teach us about systems thinking?

In slinky’s case its easy to understand that slinky is a physical system whose behavior is fundamentally dependant upon two things: 1. the characteristics of the system, 2. outside forces affecting the system. If you manipulate slinky in different ways you would get different behaviors, but the behaviors would always be closely related to slinky’s internal qualities.

But why is this important? Well, just think about how governments, politicians, organizations and institutions usually approach problem solving. Drug problems are solved by putting addicts into prison, type two diabetes is taken care of by prescribing medicine, and poor economic growth is resolved by subsidizing badly performing industries. Different countries have their own bad examples, but the thinking behind the issues is often the same. We as humans tend to often focus only on changing the way we manipulate a system, instead of changing the system itself!

With simple physical systems we know how to make system change possible: you would not use slinky to hammer a nail, you’d use a hammer. However, with more complex systems, such as schools systems or cities, we sometimes forget that the behavior we witness is the result of the system acting the way it’s design to act. If the end result of a system is drug addicts and population suffering from diabetes, then the system has been designed to produce these results. Instead governments and organizations often find blame in some outside forces. They try to fix the issue by starting initiatives and programs rather than changing the system itself. In the US the government appears to often declare war against societal issues, effectively preventing any real change from happening. In Finland, our government attempts to get students to graduate faster by placing restrictions on maximum study years, which is another demonstration of linear thinking.

The principle: The system itself often causes its own behavior. In order to change the behavior, change the system.

Other implications of this principle:

  • A failing industry is not always the result of bad policy or leadership. Creative destruction is part of the continuous cycle of innovation that drives our economies (a self-renewing system)
  • Type two diabetes and heart problems are not the failing of an individual. We have encouraged the development of industries that produce foods that are cheap and unhealthy. We have also made easy access to these foods possible.
  • Long times of graduation in Finland are not because students are lazy. Our education system encourages students to postpone graduation.

 

Creative Commons NYC – MoMA: Philip Johnson Architecture and Design Galleries – Slinky by Wally Gobetz is licensed under CC BY 2.0.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published.